

Kommunitas

Smart Contract Security Audit

Prepared by: ShellBoxes

July 20, 2021 – July 27, 2021
Shellboxes.com

contact@shellboxes.com

 2

Document Properties

Client Kommunitas

Target Kommunitas Staking Smart Contract

Version 1.0

Auditors Farouk El Alem, Inas Hasnaoui

Reviewed By Inas Hasnaoui

Approved By Inas Hasnaoui

Classification Public

Document History

VERSION MODIFICATION DATE AUTHOR

0.1 Initial Draft July 23, 2021 Farouk El Alem

0.2 Additional Findings July 27, 2021 Inas Hasnaoui
0.3 Final Version August 01, 2021 Inas Hasnaoui

1.0 Remediation Plan August 02, 2021 Farouk El Alem

Contacts

VERSION COMPANY EMAIL

Inas Hasnaoui ShellBoxes i.hasnaoui@shellboxes.com

Farouk El Alem ShellBoxes f.elalem@shellboxes.com

mailto:i.hasnaoui@shellboxes.com

 3

Contents

Contents .. 3

1. Introduction .. 4

1.1. About Kommunitas .. 4

1.2. Approach & Methodology ... 4

1.2.1. Risk Methodology .. 5

1.3. Scope ... 5

2. Findings Overview ... 6

2.1. Summary .. 6

2.2. Key Findings.. 6

3. Findings Details .. 7

3.1. Burning Tokens Without Intention of User [HIGH] .. 7

3.2. Reentrancy Attack & Possibility of asynchronization in the communityStacked variable [HIGH] 8

3.3. Missing Address Validation [MEDIUM] .. 9

3.4. Owner can Renounce Ownership [MEDIUM] ... 10

3.5. For Loop Over Dynamic Array [MEDIUM] .. 12

3.6. Divide Before Multiply [MEDIUM] ... 13

3.7. Lack of verification in the constructor function [LOW] .. 14

3.8. Usage of Block.TimeStamp [LOW] .. 15

3.9. Floating Pragma [LOW] .. 16

3.10. Static Analysis .. 17

4. Conclusion .. 26

 4

1. Introduction

Kommunitas engaged ShellBoxes to conduct a security assessment on the Staking Smart Contract

beginning on July 20th, 2021 and ending July 27th, 2021. We detail our methodical methodology in

this report to evaluate potential security issues in the smart contract implementation, exposing

possible semantic discrepancies between the smart contract code and design document, and

making additional ideas or recommendations for improvement. Our findings indicate that the

current version of smart contracts can be enhanced further due to the presence of many security

and performance concerns.

This document summarizes the findings of our audit.

1.1. About Kommunitas

Kommunitas is a decentralized and tier-less Launchpad on Polygon. They are bridging the world

to the biggest project in the most economical chain on cryptocurrency space. Kommunitas

platform’s goal is to allow project teams to focus on their project development and building their

products, while the community handle the marketing, exposure and initial user base. They are

looking for strong team with a unique and innovative vision in the cryptocurrency industry.

1.2. Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to strike a balance

between efficiency, timeliness, practicability, and correctness in relation to the audit's scope.

While manual testing is advised for identifying problems in logic, procedure, and implementation,

Issuer Kommunitas

Website https://kommunitas.net/

Type Polygon Smart Contract

Platform Solidity

Audit Method Whitebox

 5

automated testing techniques help to expand the coverage of smart contracts and can quickly

detect items that violate security best practices.

1.2.1. Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment technique that

considers both the LIKELIHOOD and IMPACT of a security incident. This framework is effective at

conveying the features and consequences of technological vulnerabilities.

Its quantitative paradigm enables repeatable and precise measurement while also revealing the

underlying susceptibility characteristics that were used to calculate the Risk scores. A risk level

will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicating the greatest possibility

or impact.

▪ Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

▪ Impact quantifies the technical and economic costs of a successful attack.

▪ Severity indicates the risk's overall criticality.

Probability and impact are classified into three categories: H, M, and L, which correspond to high,

medium, and low, respectively. Severity is determined by probability and impact and is

categorized into four levels, namely Critical, High, Medium, and Low.

Im
pa

ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

 High Medium Low

 Likelihood

1.3. Scope

The Staking Contract in the Kommunitas Repository

Commit ID: 892ebb67592e195c90f5d45d88a6187de76539a6

 6

2. Findings Overview

2.1. Summary

The following is a synopsis of our conclusions from our analysis of the Kommunitas

implementation. During the first part of our audit, we examine the smart contract source code and

run the codebase via a static code analyzer. The objective here is to find known coding problems

statically and then manually check (reject or confirm) issues highlighted by the tool. Additionally,

we check business logics, system processes, and DeFi-related components manually to identify

potential hazards and/or defects.

2.2. Key Findings

In general, these smart contracts are well-designed and constructed, but their implementation

might be improved by addressing the discovered flaws, which include 2 critical-severity

vulnerability, 4 medium-severity vulnerability, 3 low-severity vulnerabilities.

Vulnerabilities Severity Status

Burning Tokens Without Intention of User High Fixed

Re-Entrancy Attack High Fixed

Missing Address Validation Medium Fixed

Owner can Renounce Ownership Medium Acknowledged

For Loop Over Dynamic Array Medium Acknowledged

Divide Before Multiply Medium Fixed

Lack of verification in the constructor function Low Fixed

Floating Pragma Low Fixed

Usage of Block.TimeStamp Low Acknowledged

 7

3. Findings Details

3.1. Burning Tokens Without Intention of User [HIGH]

Description:

The user can unlock the tokens that are staked if the maturity condition is verified, then the reward

is automatically calculated and the komTokens are transferred to the address, if the staked tokens

are less than the value 3000*1e8, a komvToken is automatically burned. The problem here is that

any user can call this function and trigger this process so inserting an address of a person who

validates these conditions will cause his komvToken to be burned without having his permission.

Code:

Listing 1 : KommunitasStaking (Lines 121,122)
 if(getUserStakedTokens(_of) < 3000*1e8 && komvToken.balanceOf(_of) > 0){

 komvToken.burn(_of, 1);

 }

Risk Level:

Likelihood – 5

Impact - 3

Recommendation:

Restrict the call of this function to the person who staked the tokens through a require and

compare the msg.sender with the _of address or modify the code so that the function uses the

msg.sender variable directly.

Fix 1 : KommunitasStaking (Lines 106)
 function unlock(address _of) external returns (uint256) {

 require(msg.sender == _of,"You can't call this function ! ");

 uint256 unlockableTokens;

 uint256 unlockablePrincipalStakedAmount;

 uint256 locksLength = locks[_of].length;

Solved: Kommunitas Team has solved this issue by using the msg.sender as the address _of in

commit 17ce810 .

 8

3.2. Reentrancy Attack & Possibility of

asynchronization in the communityStacked

variable [HIGH]

Description:

After verifying that all necessary conditions have been met, the contract sends the komTokens to

the specified address, and this amount is then deducted from the variable communityStacked. The

issue arises at the transfer function level, which does not verify if the transaction was properly

completed, allowing a hacker to create a contract that forces the transaction to fail. However, the

smart contract will receive the total amount of tokens but the instruction .sub will never be

executed, and so the variable communityStaked will remain unchanged.

Code:

Listing 2 : KommunitasStaking (Lines 118)
if (unlockableTokens > 0) {

 komToken.transfer(_of, unlockableTokens);

 communityStaked = communityStaked.sub(unlockablePrincipalStakedAmount);

Listing 3 : KommunitasStaking (Lines 156)
komToken.transfer(msg.sender, withdrawableAmount);

communityStaked = communityStaked.sub(unlockableTokens);

if(getUserStakedTokens(msg.sender) < 3000*1e8 && komvToken.balanceOf(msg.sender) > 0){

 komvToken.burn(msg.sender, 1);

Risk Level:

Likelihood – 4

Impact – 4

 9

Recommendation:

Always check if the transaction has not failed or any call of some external functions like transfer

should be done last to avoid re-entrancy and synchronization problems.

Fix 2 : KommunitasStaking (Lines 118)
 if (unlockableTokens > 0) {

 communityStaked = communityStaked.sub(unlockablePrincipalStakedAmount);

 if(getUserStakedTokens(_of) < 3000*1e8 && komvToken.balanceOf(_of) > 0){

 komvToken.burn(_of, 1);

 }

 komToken.transfer(_of, unlockableTokens);

 emit Unlocked(_of, unlockableTokens);

 }

 return unlockableTokens;

Fix 3 : KommunitasStaking (Lines 156)
communityStaked = communityStaked.sub(unlockableTokens);

if(getUserStakedTokens(msg.sender) < 3000*1e8 && komvToken.balanceOf(msg.sender) > 0){

 komvToken.burn(msg.sender, 1);
}

komToken.transfer(msg.sender, withdrawableAmount);

Solved: External calls have been moved to the end of the functions by the Kommunitas Team in

commit 17ce810.

3.3. Missing Address Validation [MEDIUM]

Description:

Certain functions lack a safety check in the address, the address-type argument should include a

zero-address test, otherwise, the contract's functionality may become inaccessible or tokens may

be burned in perpetuity.

 10

Code

Listing 4 : KommunitasStaking (Lines 86, 87)
 function _stake(address _user, uint256 _amount, uint256 _duration) internal {

 require(_amount != 0, "Amount must not be zero.");

 require(_duration <= maxDuration, "Lock exceeds maximum duration.");

 require(_duration >= minDuration, "Locking period is too short.");

Risk Level:

Likelihood - 3

Impact – 3

Recommendation:

It’s recommended to undertake further validation prior to user-supplied data. The concerns can

be resolved by utilizing a whitelist technique or a modifier.

Solved: Kommunitas Team solved this issue by adding a verification in the _user address.

Fixed 1 : KommunitasStaking (Lines 86, 87)
 function _stake(address _user, uint256 _amount, uint256 _duration) internal {

 require(_user != address(0), "Zero Address");

 require(_amount != 0, "Amount must not be zero.");

 require(_duration <= maxDuration, "Lock exceeds maximum duration.");

 require(_duration >= minDuration, "Locking period is too short.");

3.4. Owner can Renounce Ownership [MEDIUM]

Description:

Typically, the contract's owner is the account that deploys the contract. As a result, the owner is

able to perform certain privileged activities on his behalf. The renounceOwnership function is used

in smart contracts to renounce ownership. Otherwise, if the contract's ownership has not been

transferred previously, it will never have an Owner, which is risky.

Listing 5 : KommunitasStaking (Lines 10, 11)
contract KommunitasStaking is Ownable {

 using SafeMath for uint256;

 11

Risk Level:

Likelihood – 2

Impact - 3

Recommendation:

It is advised that the Owner cannot call renounceOwnership without first transferring ownership

to a different address. Additionally, if a multi-signature wallet is utilized, executing the

renounceOwnership method for two or more users should be confirmed. Alternatively, the

Renounce Ownership functionality can be disabled by overriding it.

Fix 4 : KommunitasStaking (Lines -)
function renounceOwnership() public override onlyOwner {

 revert("Impossible Action !");

}

Risk Accepted: Kommunitas team accepted this risk since to exploit this bug an attacker should

control the Wallet of the Owner.

 12

3.5. For Loop Over Dynamic Array [MEDIUM]

Description:

When smart contracts are deployed or their associated functions are invoked, the execution of

these operations always consumes a certain quantity of gas, according to the amount of

computation required to accomplish them. Modifying an unknown-size array that grows in size

over time can result in a Denial of Service attack.

Simply by having an excessively huge array, users can exceed the gas limit, therefore preventing

the transaction from ever succeeding.

Code:

Listing 6 : KommunitasStaking (Lines 110,111)
 for (uint256 i = 0; i < locksLength; i++) {

 if (locks[_of][i].maturity <= block.timestamp && !locks[_of][i].claimed) {

Listing 7 : KommunitasStaking (Lines 135,136)
 for (uint256 i = 0; i < locksLength; i++) {

 if (!locks[msg.sender][i].claimed) {

 unlockableTokens = unlockableTokens.add(locks[msg.sender][i].amount);

Listing 8 : KommunitasStaking (Lines 173,174)
 for (uint256 i = 0; i < locksLength; i++) {

 if (locks[_of][i].maturity <= block.timestamp && !locks[_of][i].claimed) {

 withdrawableTokens = withdrawableTokens.add(locks[_of][i].amount).add(locks[_of][i].reward);

Listing 9 : KommunitasStaking (Lines 204,205)
 for (uint256 i = 0; i < locksLength; i++) {

 if (locks[_of][i].maturity <= block.timestamp && !locks[_of][i].claimed) {

Listing 10 : KommunitasStaking (Lines 188,189)
 for (uint256 i = 0; i < locksLength; i++) {

 if (locks[_of][i].maturity > block.timestamp && !locks[_of][i].claimed) {

 lockedTokens = lockedTokens.add(locks[_of][i].amount).add(locks[_of][i].reward);

 13

Listing 11 : KommunitasStaking (Lines 219,220,221)
 for (uint256 i = 0; i < locksLength; i++) {

 if (!locks[_of][i].claimed) {

 lockedTokens = lockedTokens.add(locks[_of][i].amount);

Risk Level:

Likelihood – 3

Impact - 2

Recommendation:

Avoid actions that involve looping across the entire data structure. If you really must loop over an

array of unknown size, arrange for it to consume many blocs and thus multiple transactions.

Risk Accepted: Kommunitas team accepted this risk.

3.6. Divide Before Multiply [MEDIUM]

Description:

Integer division in solidity may truncate. As a result, dividing before multiplying may result in a

loss of precision. Due to precision's sensitivity, this may result in certain abnormalities in the

contract's logic.

Code:

Listing 12 : KommunitasStaking (Lines 147)
// User redeem penaltyFeesPercentage of there Unstake Amount

withdrawableAmount = (unlockableTokens.div(100)).mul(remainingFeePercentage);

// remaining is treated as penaltyAmount

uint256 penaltyAmount = (unlockableTokens.div(100)).mul(penaltyFeesPercentage);

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Do the multiplication operations before the division operations

 14

Fix 5 : KommunitasStaking (Lines 147)
// User redeem penaltyFeesPercentage of there Unstake Amount

withdrawableAmount = (unlockableTokens. mul(remainingFeePercentage).div(100));

// remaining is treated as penaltyAmount

uint256 penaltyAmount = (unlockableTokens.mul(penaltyFeesPercentage).div(100));

Solved: In the Staking Contract, the Multiplication operation is performed before division in commit

17ce810.

3.7. Lack of verification in the constructor function

[LOW]

Description:

In the constructor, the person who deployed the contract can add several parameters and among

these parameters the variables minDuration and maxDuration. No verification is done for these

variables and the creator of the contract can insert a value minDuration greater than maxDuration

which will affect the logic of the contract.

Code:

Listing 13: KommunitasStaking.sol (Lines 48,49)

 constructor(address _komToken, uint256 _apy, uint256 _minDuration, uint256 _maxDuration) {

 komToken = ERC20Burnable(_komToken);

 komvToken = new KommunitasVoting(); // KOM Governance Token Deployment

 apy = _apy;

 minDuration = _minDuration;

 maxDuration = _maxDuration;

 }

Risk Level:

Likelihood – 1

Impact – 4

Recommendation:

Add a condition to check that minDuration is smaller than maxDuration.

 15

Fix 6: KommunitasStaking.sol (Lines 48,49)

 constructor(address _komToken, uint256 _apy, uint256 _minDuration, uint256 _maxDuration) {

 require(_minDuration < _maxDuration,"MinDuration Should be Less than MaxDuration");

 komToken = ERC20Burnable(_komToken);

 komvToken = new KommunitasVoting(); // KOM Governance Token Deployment

Solved: Kommunitas Team has added the verification of the _minDuration and _maxDuration in

commit 17ce810.

3.8. Usage of Block.TimeStamp [LOW]

Description:

Block.timestamp is used in the contract. The variable block is a set of variables. The timestamp

does not always reflect the current time and may be inaccurate. The value of a block can be

influenced by miners. Maximal Extractable Value attacks require a timestamp of up to 900

seconds. There is no guarantee that the value is right, all what is guaranteed is that it is higher

than the timestamp of the previous block.

Code:

Listing 14 : KommunitasStaking (Lines 91, 92)
 uint256 matureUntil = block.timestamp.add(_duration);

 uint256 lockReward = _calculateReward(_amount, _duration);

Listing 15 : KommunitasStaking (Lines 111, 113)
for (uint256 i = 0; i < locksLength; i++) {

 if (locks[_of][i].maturity <= block.timestamp && !locks[_of][i].claimed) {

 unlockableTokens = unlockableTokens.add(locks[_of][i].amount).add(locks[_of][i].reward);

Listing 16 : KommunitasStaking (Lines 174, 176)
for (uint256 i = 0; i < locksLength; i++) {

 if (locks[_of][i].maturity <= block.timestamp && !locks[_of][i].claimed) {

 withdrawableTokens = withdrawableTokens.add(locks[_of][i].amount).add(locks[_of][i].reward);

 16

Listing 17 : KommunitasStaking (Lines 189, 190)
 for (uint256 i = 0; i < locksLength; i++) {

 if (locks[_of][i].maturity > block.timestamp && !locks[_of][i].claimed) {

Listing 18 : KommunitasStaking (Lines 206, 207)
 if (locks[_of][i].maturity <= block.timestamp && !locks[_of][i].claimed) {

 pendingRewards = pendingRewards.add(locks[_of][i].reward);

Risk Level:

Likelihood – 2

Impact - 2

Recommendation:

You can use an Oracle to get the exact time or verify if a delay of 900 seconds won’t destroy the

logic of the staking contract.

Risk Accepted: Kommunitas Team accepted this risk since 900 seconds won’t affect the logic of

the contract.

3.9. Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.7.6. Contracts should be deployed using

the same compiler version and flags that were used during the testing process. Locking the

pragma helps ensuring that contracts are not unintentionally deployed using another pragma,

such as an obsolete version that may introduce issues in the contract system.

Code:

Listing 19 : KommunitasStaking (Lines 3, 4)
pragma solidity ^0.7.6;

import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol";

Risk Level:

Likelihood – 2

 17

Impact - 1

Recommendation:

Consider locking the pragma version. It is advised that floating pragma not be used in production.

Both truffle-config.js and hardhat.config.js support locking the pragma version.

Solved: Kommunitas Team locked Pragma version to 0.7.6

3.10. Static Analysis

Description:

ShellBoxes augmented coverage of the specific contract areas through the use of automated

testing methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be used to

test mathematical relationships between Solidity instances statically and variables that allow for

the detection of errors or inconsistent usage of the contracts' APIs throughout the entire

codebase.

Results:

 18

 19

 20

 21

 22

 23

 24

 25

Conclusion:

The majority of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

 26

4. Conclusion
We examined the design and implementation of Kommunitas in this audit. The present code

base is well-organized. We would much appreciate any constructive input or ideas regarding

our methodology, audit findings, or potential scope/coverage gaps in this report.

 27

For a Contract Audit contact us at contact@shellboxes.com

