
Smart Contract Audit
Report for Kommunitas



1

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Table of Content
1. Executive summary …………………………………………...… 01
2. Checked Vulnerabilities ………………………………………… 02
3. Methods ……………………………………………………...…… 03
4. Findings …………………………………………………...……... 00

a. High severity ………………………………………...……... 00
b. Medium severity ……………………………………………. 00
c. Low severity ………………………………………………... 00
d. Informational ………………………………………………… 00

5. Automated Testing ………………………………………………. 00
6. Closing Summery ………………………………………………… 00
7. About Secureverse ………………………………………………. 00



2

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Executive summary

Project Name Kommunitas

Project Type Defi

Audit Scope Check Security and code quality

Audit Method Static and Manual

Audit Timeline 1th Aug 2022 to 31th March 2011

Source Code
PublicGovSale.sol, PublicGovFactory.sol, IPublicGovFactory.sol,
TransferHelper.sol, IKommunitasStakingV2.sol,
IKommunitasStaking.sol

Source code
Hash bb1c4787be4705d781db95382a79041e2ee5f8cf

Issue Tracking Table

High Medium Low Informational

Open Issues 0 0 8 6
Acknowledged
Issues

Resolved Issues



3

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Types of Severities

 High: The issue puts a large number of users’ sensitive information at risk, or is
reasonably likely to lead to catastrophic impact for client’s reputation or serious
financial implications for client and users.

 Medium: The issue puts a subset of users’ sensitive information at risk, would be
detrimental for the client’s reputation if exploited, or is reasonably likely to lead to
moderate financial impact.

 Low: The risk is relatively small and could not be exploited on a recurring basis, or is
a risk that the client has indicated is low-impact in view of the client’s business
circumstances.

 Informational: The issue does not pose an immediate risk, but is relevant to
security best practices or Defense in Depth.

Types of Issues
 Open: Security vulnerabilities identified that must be resolved and are currently

unresolved.

 Acknowledged: Vulnerabilities which have been acknowledged but are yet to be
resolved.

 Resolved: These are the issues identified in the initial audit and have been
successfully fixed.



4

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Checked Vulnerabilities

 Re-entrancy

 Access control

 Denial of service

 Timestamp Dependence

 Integer Overflow/Underflow

 Transaction Order Dependency

 Requirement Violation

 Gas Limit and Loops

 Incorrect Inheritance Order

 Centralization

 Unsafe external calls

 Business logic contradicting the specification

 Business logic contradicting the specification



5

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Methods

Throughout the audit of smart contract, care was taken to ensure:

 The overall quality of code.
 Use of best practices.
 Code documentation and comments match logic and expected behavior.
 Token distribution and calculations are as per the intended behavior mentioned in the
 whitepaper.
 Implementation of ERC-20 token standards.
 Efficient use of gas.
 Code is safe from re-entrancy and other vulnerabilities

The following techniques, methods and tools were used to review all the
smart contracts.

 Structural Analysis
In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

 Static Analysis
Static analysis of smart contracts was done to identify contract vulnerabilities. In this step, a
series of automated tools are used to test the security of smart contracts.

 Code Review / Manual Analysis
Manual analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually analyzed,
their logic was checked and compared with the one described in the whitepaper. Besides, the
results of the automated analysis were manually verified.

 Gas Consumption
In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code to
reduce gas consumption.



6

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

 Tools and Platforms used for Audit

 Remix IDE
 Hardhat
 Truffle Team
 Mythril

 Slither
 Consensys Surya
 Open Zeppelin Code Analyzer
 Manticore



7

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Findings

Manual Analysis

Contract Name: PublicGovFactory.Sol

High Severity Issues:

No Issue Found

Medium Severity Issues:

No Issue Found



8

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Low Severity Issues:

Vulnerability: Transfer ownership should be 2 Steps process
Reference: Contract: PublicGovFactory.sol

function transferOwnership(address _newOwner) external override onlyOwner{
require(_newOwner != address(0), "bad");
owner = _newOwner;

}

Description:

 When the owner mistakenly transfers ownership to an incorrect address, ownership is
completely removed from the original owner and cannot be reverted.

 The transferOwnership () function in the PublicGovSale contract allows the current
owner to transfer his privileges to another address. However, inside
transferOwnership (), the _newOwner is directly stored in the owner, after validating
the _newOwner is a non-zero address, which may not be enough.

Remediation:

 It would be much safer if the transition is managed by implementing a two-step
approach: _transferOwnership() and _updateOwnership().

 Specifically, the _transferOwnership () function keeps the new address in the storage,
_newOwner, instead of modifying the owner() directly. The _updateOwnership()
function checks whether _newOwner is msg.sender, which means _newOwner signs
the transaction and verifies himself as the new owner. After that, _newOwner could be
set into _owner.

Status: Open



9

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Missing Zero Address Validation in createProject()
Reference: Contract: PublicGovFactory.sol

function createProject(
uint128 _calculation,
uint128 _start,
uint128 _duration,
uint128 _sale,
uint128 _price,
uint128[4] calldata _fee_d2,
address _payment,
address _gov

) external override onlyOwner returns(address project){
require(_payment != address(0), "bad");
require(_payment == allPayments[getPaymentIndex[_payment]], "!exist");

project = address(new PublicGovSale());

allProjects.push(project);

PublicGovSale(project).initialize(
_calculation,
_start,
_duration,
_sale,
_price,
_fee_d2,
_payment,
_gov

);

emit ProjectCreated(project, allProjects.length-1);
}

Description:

 Lack of zero address validation for _gov in createProject() function may lead to
contract functionality might become inaccessible

Remediation:

 Consider adding zero address checks in order to avoid risks.

Status: Open



10

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Too much centralization
Reference: Contract: PublicGovFactory.sol

Description:

 The role owner has the authority to update critical settings of the contract like Payment
Token, Remove Payment Token, Change Fee Percentage, config at any time.

Remediation:

 We advise the client to handle the governance account carefully to avoid any potential
hack. We also advise the client to consider the following solutions:

o With reasonable latency for community awareness on privileged operations.
o Multisig with community-voted 3rd-party independent co-signers.
o DAO or Governance module increasing transparency and community

involvement.

Status: Open



11

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Informational Issues:

Vulnerability: Floating Pragma
Reference: Contract: PublicGovFactory.sol

pragma solidity ^0.8.13;

Description:

 Contract uses a floating pragma solidity ^0.8.13.

Remediation:

 Contracts should be deployed with the same compiler version and flags that have been
used during testing.

Status: Open



12

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Unclear Error message used
Reference: Contract: PublicGovFactory.sol

function setPayment(address _token) external override onlyOwner{
require (_token != address(0), "bad");
if(allPayments.length > 0) require(_token != allPayments[getPaymentIndex[_token]],

"existed");

allPayments.push(_token);
getPaymentIndex[_token] = allPayments.length-1;

}

Description:

 Contract has so many unclear error messages in require statements, that lead to
confusion. Like “bad”

Remediation:

 Try to use some meaningful error message that properly describe the revert condition.

Status: Open



13

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Missing Events for Some Critical Functions
Reference: Contract: PublicGovFactory.sol

function transferOwnership(address _newOwner) external override onlyOwner{
require(_newOwner != address(0), "bad");
owner = _newOwner;

}

function setPayment(address _token) external override onlyOwner{
require(_token != address(0), "bad");
if(allPayments.length > 0) require(_token != allPayments[getPaymentIndex[_token]],

"existed");

allPayments.push(_token);
getPaymentIndex[_token] = allPayments.length-1;

}

Description:

 The missing event makes it difficult to track off-chain changes. An event should be
emitted for significant transactions calling the following functions: transferOwnership
(), setPayment(), removePayment(), setPercentage(), config().

Remediation:

 We recommend to emitting an event to log critical updates of mentioned important
functions.

Status: Open



14

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Contract Name: PublicGovSale.Sol

High Severity Issues:

No Issue Found

Medium Severity Issues:

No Issue Found

Low Severity Issues:

Vulnerability: Multiple Compiler versions are used (0.8.13 and 0.6.0)
Reference: Contract: PublicGovSale.Sol

pragma solidity ^0.8.13;

pragma solidity >=0.6.0;

Description:

 Two different type Solidity compiler versions used. In TransferHelper Contract
use >=0.6.0 where other contracts use 0.8.13

Remediation:

 We recommend you to use a single (lock pragma) all over the contracts so that it will
not lead to any unwanted bugs in future.

Status: Open



15

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Transfer ownership should be 2 Steps process
Reference: Contract: PublicGovSale.Sol

function transferOwnership(address _newOwner) external onlyOwner {
require(_newOwner != address(0), "bad");
owner = _newOwner;

}

Description:

 When the owner mistakenly transfers ownership to an incorrect address, ownership is
completely removed from the original owner and cannot be reverted.

 The transferOwnership() function in the PublicGovSale contract allows the current
owner to transfer his privileges to another address. However, inside
transferOwnership(), the _newOwner is directly stored in the owner, after validating
the _newOwner is a non-zero address, which may not be enough.

Remediation:

 It would be much safer if the transition is managed by implementing a two-step
approach: _transferOwnership() and _updateOwnership().

 Specifically, the _transferOwnership () function keeps the new address in the storage,
_newOwner, instead of modifying the owner () directly. The _updateOwnership()
function checks whether _newOwner is msg.sender, which means _newOwner signs
the transaction and verifies himself as the new owner. After that, _newOwner could be
set into _owner.

Status: Open



16

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Missing Zero Address Validation
Reference: Contract: PublicGovSale.Sol

function setGov(address _gov) external onlyOwner {
require(uint128(block.timestamp) < booster[1].start, "bad");

gov = _gov;
}

function setPayment(address _payment) external onlyOwner {
require(uint128(block.timestamp) < booster[1].start, "bad");

payment = IERC20(_payment);
}

Description:

 Lack of zero address validation for setGov (), setPayment () function may lead to
contract functionality might become inaccessible

Remediation:

 Consider adding zero address checks in order to avoid risks.

Status: Open



17

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Use of a dynamic array

Reference: Contract: PublicGovSale.Sol
Description:

 Functions like migrateCandidates(), setWhitelist_d6(), updateWhitelist_d6() take
dynamic arrays as parameter, If the arrays are too long then that could lead to
DoS(Denial of service) by exceeding the gas limits of block.

Remediation:

 Make sure to use limited size of array (capped array) or prefer batch transaction.

Status: Open

Vulnerability: Too much centralization

Reference: Contract: PublicGovSale.Sol
Description:

 The role owner has the authority to update critical settings of the contract like Payment
Token, Remove Payment Token, Change Fee Percentage, config at any time.

Remediation:

 We advise the client to handle the governance account carefully to avoid any potential
hack. We also advise the client to consider the following solutions:

o With reasonable latency for community awareness on privileged operations.
o Multisig with community-voted 3rd-party independent co-signers.
o DAO or Governance module increasing transparency and community

involvement.

Status: Open



18

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Informational Issues:

Vulnerability: Floating Pragma
Reference: Contract: PublicGovSale.Sol

pragma solidity ^0.8.13;

Description:

 Contract uses a floating pragma solidity ^0.8.13.

Remediation:

 Contracts should be deployed with the same compiler version and flags that have been
used during testing.

Status: Open



19

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Unclear Error message used
Reference: Contract: PublicGovSale.Sol

function setAllocation(address _user, uint32 _running) private returns(bool) {
require(_setUserTotalStaked(_user), "bad#1");
require(_setUserAllocation(_user, _running), "bad#2");

return true;
}

Description:

 Contract has so many unclear error messages in require statements, that lead to
confusion. Like [‘bad’]

Remediation:

 Try to use some meaningful error message that properly describe the revert condition.

Status: Open



20

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Vulnerability: Missing Events for Some Critical Functions
Reference: Contract: PublicGovSale.Sol

function refund() external {
uint128 _refund_d2 = refund_d2;
uint256 amount = (uint256(getTotalPurchase(msg.sender)) * uint256(price) *

uint256(_refund_d2)) / 1e22; // 1e18 (token decimal) + 1e4 (percent 2 decimal)

require(isRefund && _refund_d2 > 0 && isBuyer(msg.sender) && !refunded[msg.sender]
&& payment.balanceOf(address(this)) >= amount, "bad");

refunded[msg.sender] = true;

TransferHelper.safeTransfer(address(payment), msg.sender, amount);
}

Description:

 The missing event makes it difficult to track off-chain changes. An event should be
emitted for significant transactions calling the following functions: refund (), moveFee
(), moveFund (),

Remediation:

 We recommend to emitting an event to log critical updates of mentioned important
functions.

Status: Open



21

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Static Analysis

 Slither:

o Issue Found: Total 125 issues were prompted in the for 3 contracts [PublicGovFactory.sol,
PublicGovSale.sol, TransferHelper.sol] and most of them was found false positive.

o The True positive issue is already covered in manual analysis.



22

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

Closing Summary

Description about Project overall posture and talk about risk associated with
Project.



23

SECUREVERSE AUDIT REPORT WWW.SECUREVERSE.IN

About Secureverse

Secureverse is the emerging Web3 Security solution provider. We at
secureverse provides the Smart Contract audit, Blockchain infrastructure
Penetration testing and the Cryptocurrency forensic services with very
affordable prices.

To Know More

Twitter: https://twitter.com/secureverse

LinkedIn: https://www.linkedin.com/company/secureverse/

Telegram: https://t.me/secureverse

Email Address: http://secureverse@protonmail.com/

https://twitter.com/secureverse
https://www.linkedin.com/company/secureverse/
https://t.me/secureverse
http://secureverse@protonmail.com/

